Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18993, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923782

RESUMO

Little is known about the expression of the orphan G protein-coupled receptor GPR19 at the protein level. Therefore, we developed a rabbit antibody, targeting human GPR19. After verification of the antibody specificity using GPR19-expressing cell lines and a GPR19-specific siRNA, the antibody was used for immunohistochemical staining of a variety of formalin-fixed, paraffin-embedded normal and neoplastic human tissue samples. In normal tissues, GPR19 expression was detected in a distinct cell population within the cortex, in single cells of the pancreatic islets, in intestinal ganglia, gastric chief cells, and in endocrine cells of the bronchial tract, the gastrointestinal tract, and the prostate. Among the 30 different tumour entities investigated, strong GPR19 expression was found in adenocarcinomas, typical and atypical carcinoids of the lung, and small cell lung cancer. To a lesser extent, the receptor was also present in large cell neuroendocrine carcinomas of the lung, medullary thyroid carcinomas, parathyroid adenomas, pheochromocytomas, and a subpopulation of pancreatic neuroendocrine neoplasms. In lung tumours, a negative correlation with the expression of the proliferation marker Ki-67 and a positive interrelationship with patient survival was observed. Overall, our results indicate that in adenocarcinomas and neuroendocrine tumours of the lung GPR19 may serve as a suitable diagnostic or therapeutic target.


Assuntos
Adenocarcinoma , Neoplasias das Glândulas Suprarrenais , Carcinoma Neuroendócrino , Neoplasias Pulmonares , Tumores Neuroendócrinos , Masculino , Animais , Coelhos , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Pulmonares/patologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neurotransmissores/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835377

RESUMO

Little information is available concerning protein expression of the calcitonin receptor-like receptor (CALCRL) at the protein level. Here, we developed a rabbit monoclonal antibody, 8H9L8, which is directed against human CALCRL but cross-reacts with the rat and mouse forms of the receptor. We confirmed antibody specificity via Western blot analyses and immunocytochemistry using the CALCRL-expressing neuroendocrine tumour cell line BON-1 and a CALCRL-specific small interfering RNA (siRNA). We then used the antibody for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic tissues. In nearly all tissue specimens examined, CALCRL expression was detected in the capillary endothelium, smooth muscles of the arterioles and arteries, and immune cells. Analyses of normal human, rat, and mouse tissues revealed that CALCRL was primarily present in distinct cell populations in the cerebral cortex; pituitary; dorsal root ganglia; epithelia, muscles, and glands of the larger bronchi; intestinal mucosa (particularly in enteroendocrine cells); intestinal ganglia; exocrine and endocrine pancreas; arteries, capillaries, and glomerular capillary loops in the kidneys; the adrenals; Leydig cells in the testicles; and syncytiotrophoblasts in the placenta. In the neoplastic tissues, CALCRL was predominantly expressed in thyroid carcinomas, parathyroid adenomas, small-cell lung cancers, large-cell neuroendocrine carcinomas of the lung, pancreatic neuroendocrine neoplasms, renal clear-cell carcinomas, pheochromocytomas, lymphomas, and melanomas. In these tumours with strong expression of CALCRL, the receptor may represent a useful target structure for future therapies.


Assuntos
Proteína Semelhante a Receptor de Calcitonina , Neoplasias , Animais , Humanos , Masculino , Camundongos , Ratos , Adrenomedulina/metabolismo , Artérias/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , Neoplasias/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362289

RESUMO

Little is known about the adaptor protein FAM159B. Recently, FAM159B was shown to be particularly expressed in neuroendocrine cells and tissues, such as pancreatic islets and neuroendocrine cells of the bronchopulmonary and gastrointestinal tracts, as well as in different types of neuroendocrine tumours. To gain insights into possible interactions of FAM159B with other proteins and/or receptors, we analysed the co-expression of FAM159B and various neuroendocrine-specific markers in the cancer cell lines BON-1, PC-3, NCI-h82, OH-1, and A431 and also in human pancreatic tissues and pancreatic neuroendocrine tumours. The markers included prominent markers of neuroendocrine differentiation, such as chromogranin A (CgA), neuron-specific enolase (NSE), synaptophysin (SYP), insulinoma-associated protein 1 (INSM1), neural cell adhesion molecule 1 (NCAM1), serotonin (5-HT), somatostatin-14/28 (SST), and several receptors that are typically expressed by neuroendocrine cells, such as dopamine receptor 2 (D2R), somatostatin receptor (SSTR) 1, 2, 3, 4 and 5, and regulator of G-protein signalling 9 (RGS9). FAM159B was expressed evenly throughout the cytosol in all five cancer cell lines. Immunocytochemical and immunohistochemical analyses revealed co-expression of FAM159B with SYP, INSM1, RGS9, D2R, SSTR2, SSTR3, SSTR4, and SSTR5 and strong overlapping co-localisation with NSE. Double-labelling and co-immunoprecipitation Western blot analyses confirmed a direct association between FAM159B and NSE. These results suggest the involvement of FAM159B in several intracellular signalling pathways and a direct or indirect influence on diverse membrane proteins and receptors.


Assuntos
Células Neuroendócrinas , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Células Neuroendócrinas/metabolismo , Biomarcadores Tumorais/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Cromogranina A/genética , Cromogranina A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...